SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY: PUTTUR
 (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583
Subject with Code: Differential Equations \& Vector Calculus Course \& Branch: B.Tech - Common to all (23HS0831)
Year \& Sem: I-B.Tech \& II-Sem
Regulation: R23

UNIT -I
 DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE

1	a) Find the Integrating Factor of $\frac{d y}{d x}+y=x$	[L3][CO1]	[2M]
	b) Find the Integrating Factor of $\frac{d y}{d x}\left(x^{2} y^{3}+x y\right)=1$	[L3][CO1]	[2M]
	c) Verify the exactness of the differential equation $2 x y d y-\left(x^{2}-y^{2}+1\right) d x=0$	[L4][CO1]	[2M]
	d) State Newton's law of cooling.	[L1][CO1]	[2M]
	e) State Newton's Law of Natural growth and decay.	[L1][CO1]	[2M]
2	a) Solve $\boldsymbol{x} \frac{d y}{d x}+\boldsymbol{y}=\boldsymbol{\operatorname { l o g } x}$.	[L3][CO1]	[5M]
	b) Solve $\frac{d y}{d x}+2 x y=e^{-x^{2}}$	[L3][CO1]	[5M]
3	a) Solve $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$	[L3][CO1]	[5M]
	b) Solve $(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}$	[L3][CO1]	[5M]
4	a) Solve $\boldsymbol{x} \frac{d \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}+\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}} \boldsymbol{y}^{\mathbf{6}}$	[L3][CO1]	[5M]
	b) Solve $\frac{d y}{d x}+y \cdot \tan x=y^{2} \sec x$	[L3][CO1]	[5M]
5	a) Solve $(2 x-y+1) d x+(2 y-x-1) d y=0$	[L3][CO1]	[5M]
	b) Solve $\left(y^{2}-2 x y\right) d x+\left(2 x y-x^{2}\right) d y=0$	[L3][CO1]	[5M]
6	a) Solve $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$	[L3][CO1]	[5M]
	b) Solve (x^{2}-ay $) \mathrm{dx}=\left(\mathrm{ax}-\mathrm{y}^{2}\right) \mathrm{dy}$	[L3][CO1]	[5M]
7	a) Solve $\mathrm{x}^{2} \mathrm{ydx}-\left(\mathrm{x}^{3}+\mathrm{y}^{3}\right) \mathrm{dy}=0$	[L3][CO1]	[5M]
	b) Solve $y\left(x^{2} y^{2}+2\right) d x+x\left(2-2 x^{2} y^{2}\right) d y=0$	[L3][CO1]	[5M]
8	A body is originally at $80^{\circ} \mathrm{C}$ and cools down to $60^{\circ} \mathrm{C}$ in 20 min . If the temperature of the air is $40^{\circ} \mathrm{C}$, find the temperature of the body after 40 min ?	[L3][CO1]	[10M]
9	The temperature of a body drops from $100^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ in 10 minutes when the surrounding air is $20^{\circ} \mathrm{C}$. What will be its temperature after half-an-hour? When will the temperature be $25^{\circ} \mathrm{C}$?	[L3][CO1]	[10M]
10	The number N of bacteria in a culture grew at a rate proportional to N . The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $1 \frac{1}{2}$ hour ?	[L1][CO1]	[10M]
11	An inductance of 3 H and a resistance of 12Ω are connected in series with an e.m.f of 90 V . If the current is zero when $\mathrm{t}=0$, what is the current at the end of 1 sec ?	[L1][CO1]	[10M]

UNIT -II

LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER (CONSTANT COEFFICIENTS)

1	a) Solve $\frac{d^{2} y}{d x^{2}}-a^{2} y=0$	[L3][CO2]	[2M]
	b) Find the Particular Integral of $\left(D^{2}+3 D+2\right) y=e^{4 x}$	[L3][CO2]	[2M]
	c) Define Wronskian of functions of y_{1} and y_{2}.	[L1][CO2]	[2M]
	d) What is the formula of L-C-R Circuit with e.m.f?	[L1][CO2]	[2M]
	e) Define Simple Harmonic motion.	[L1][CO2]	[2M]
2	a) Solve $\left(D^{2}+5 D+6\right) y=e^{x}$	[L3][CO2]	[5M]
	b) Solve ($\left.D^{2}-4 D+3\right) y=4 e^{3 x}$ given ; $y(0)=-1, y^{1}(0)=3$.	[L3][CO2]	[5M]
3	a) Solve ($\left.D^{2}-3 D+2\right) y=\cos 3 x$	[L3][CO2]	[5M]
	b) Solve ($\left.D^{2}-4 D\right) y=e^{x}+\sin 3 x \cdot \cos 2 x$	[L3][CO2]	[5M]
4	a) Solve $\left(D^{2}+D+1\right) y=x^{3}$	[L3][CO2]	[5M]
	b) Solve ($\left.D^{2}-3 D+2\right) y=x e^{3 x}+\sin 2 x$	[L3][CO2]	[5M]
5	Solve $\frac{d^{2} y}{d x^{2}}+y=e^{-x}+x^{3}+e^{x} \sin x$.	[L3][CO2]	[10M]
6	a) Solve $\left(D^{2}+1\right) y=x \sin x$ by the method of variation of parameters.	[L1][CO2]	[5M]
	b) Solve $\left(D^{2}+4\right) y=\tan 2 x$ by the method of variation of parameters.	[L3][CO2]	[5M]
7	a) Solve ($\left.D^{2}-2 D\right) y=e^{x} \sin x$ by the method of variation of parameters.	[L3][CO2]	[5M]
	b) Solve $\left(D^{2}+4\right) y=\operatorname{Sec} 2 x$ by the method of variation of parameters.	[L3][CO2]	[5M]
8	a) Solve $\left(D^{2}+1\right) y=\operatorname{Cosec} x$ by the method of variation of parameters.	[L3][CO2]	[5M]
	b) Solve $\frac{d x}{d t}=3 x+2 y: \frac{d y}{d t}+5 x+3 y=0$.	[L3][CO2]	[5M]
9	a) Solve $\frac{d y}{d x}+y=z+e^{x} \quad ; \frac{d z}{d x}+z=y+e^{x}$.	[L3][CO2]	[5M]
	b) Find the current ' i ' in the L-C-R circuit assuming zero initial current and charge i, if $\mathrm{R}=80$ ohms, $\mathrm{L}=20$ henrys, $\mathrm{C}=0.01$ farads and $\mathrm{E}=100 \mathrm{~V}$.	[L3][CO2]	[5M]
10	A condenser of capacity ' C ' discharged through an inductance ' L ' and resistance ' R ' in series and the charge ' q ' at time ' t ' satisfies the equation $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{c}=0$. Given that $\mathrm{L}=0.25$ henries, $\mathrm{R}=250 \mathrm{ohms}, \mathrm{C}=2 \times 10^{-6}$ farads, and that when $\mathrm{t}=0$, charge ' q ' is 0.002 coulombs and the current $\frac{d q}{d t}=0$, Obtain the value of ' q ' in terms of ' t '.	[L3][CO2]	[10M]
11	An uncharged condenser of capacity is charged applying an e.m.f $E \sin \frac{t}{\sqrt{L C}}$ through leads of self-inductance L and negligible resistance. Prove that at time ' t ', the charge on one of the plates is $\frac{E C}{2}\left[\sin \frac{t}{\sqrt{L C}}-\frac{t}{\sqrt{L C}} \cos \frac{t}{\sqrt{L C}}\right]$.	[L5][CO2]	[10M]

UNIT -III

PARTIAL DIFFERENTIAL EQUATIONS

1	a) Form the Partial differential equation by eliminating the arbitrary constants ' a ' and ' b ' form $z=a x+b y+a^{2}+b^{2}$.	[L6][CO3]	[2M]
	b) Form the Partial differential equation by eliminating the arbitrary constants ' a ' and ' b ' from $z=a x+b y+\left(\frac{a}{b}\right)-b$.	[L6][CO3]	[2M]
	c) Form the Partial Differential Equation by eliminating the arbitrary functions from $\mathrm{z}=f(x)+e^{y} \cdot g(x)$	[L6][CO3]	[2M]
	d) Express the Lagrange's linear form of first order P.D.E.	[L2][CO4]	[2M]
	e) Define Homogeneous Linear Partial differential equation with constant coefficients of $\mathrm{n}^{\text {th }}$ order.	[L1][CO4]	[2M]
2	a) Form the Partial Differential Equation by eliminating the constants from $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$	[L6][CO3]	[5M]
	b) Form the Partial Differential Equation by eliminating the constants from $(x-a)^{2}+(y-b)^{2}=z^{2} \cot ^{2} \alpha$. where ' α ' is a parameter.	[L6][CO3]	[5M]
3	a) Form the Partial Differential Equation by eliminating the constants from $z=a \cdot \log \left[\frac{b(y-1)}{(1-x)}\right]$	[L6][CO3]	[5M]
	b) Form the Partial Differential Equation by eliminating the constants from $\log (a z-1)=x+a y+b$.	[L6][CO3]	[5M]
4	a) Form the Partial Differential Equation by eliminating the arbitrary functions from $\quad x y z=f\left(x^{2}+y^{2}+z^{2}\right)$	[L6][CO3]	[5M]
	b) Form the Partial Differential Equation by eliminating the arbitrary functions from $\mathrm{z}=x y+f\left(x^{2}+y^{2}\right)$	[L6][CO3]	[5M]
5	a) Form the P.D.E by eliminating the arbitrary function from $\emptyset\left(\frac{y}{x}, x^{2}+y^{2}+z^{2}\right)=0$	[L6][CO3]	[5M]
	b) Form the P.D.E by eliminating the arbitrary function from $f\left(x^{2}+y^{2}, z-x y\right)=0$	[L6][CO3]	[5M]
6	a) Solve $\frac{y^{2} z}{x} p+x z q=y^{2}$	[L3][CO4]	[5M]
	b) Solve $(z-y) p+(x-z) q=y-x$	[L3][CO4]	[5M]
7	Solve $x(y-z) p+y(z-x) q=z(x-y)$	[L3][CO4]	[10M]
8	Solve $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$	[L3][CO4]	[10M]
9	a) Solve $2 \frac{\partial^{2} z}{\partial x^{2}}+5 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=0$	[L3][CO4]	[5M]
	b) Solve $\mathrm{r}+6 \mathrm{~s}+9 \mathrm{t}=0$.	[L3][CO4]	[5M]
10	Solve $\frac{\partial^{2} z}{\partial x^{2}}+4 \frac{\partial^{2} z}{\partial x \partial y}-5 \frac{\partial^{2} z}{\partial y^{2}}=\sin (2 x+3 y)$	[L3][CO4]	[10M]
11	Solve $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=\cos x \cos 2 y$	[L3][CO4]	[10M]

UNIT -IV VECTOR DIFFERENTIATION

1	a) Define Divergence of a vector.	[L1][CO5]	[2M]
	b) Define Solenoidal Vector.	[L1][CO5]	[2M]
	c) Find div \vec{r} where $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$	[L3][CO5]	[2M]
	d) Define Irrotational Vector.	[L1][CO5]	[2M]
	e) Find (curlF $\overline{\mathrm{T}}^{\prime}$ given that $\mathrm{F}=3 \mathrm{xy} \overline{\mathrm{i}}+2 y^{2} \mathrm{z} \overline{\mathrm{j}}+z^{2} \mathrm{yk}$ - At the point ($1-2,-1$).	[L3][CO5]	[2M]
2	a) Find grad f if $f=x z^{4}-x^{2} y$ at a point $(1,-2,1)$.Also find $\|\nabla f\|$	[L3][CO5]	[5M]
	b) If $\bar{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ then prove that $\nabla r=\frac{\bar{r}}{r}$	[L5][CO5]	[5M]
3	a) Find the directional derivative of $2 x y+z^{2}$ at $(1,-1,3)$ in the direction of $\vec{\imath}+2 \vec{\jmath}+3 \vec{k}$.	[L3][CO5]	[5M]
	b) Find the directional derivative of $x y z^{2}+x z$ at $(1,1,1)$ in the direction of normal to the surface $3 x y^{2}+y=z$ at $(0,1,1)$.	[L3][CO5]	[5M]
4	a) Evaluate the angle between the normal to the surface $x y=z^{2}$ at the points $(4,1,2)$ and $(3,3,-3)$.	[L5][CO5]	[5M]
	b) Find the maximum or greatest value of the directional derivative of $f=x^{2} y z^{3}$ at the point $(2,1,-1)$.	[L3][CO5]	[5M]
5	a) Find a unit normal vector to the given surface $z=x^{2}+y^{2}$ at (-1.-2.5).	[L3][CO5]	[5M]
	b) Find div curl \bar{f} for $\bar{f}=y z \bar{i}+z x \bar{j}+x y \bar{k}$	[L3][CO5]	[5M]
6	c) Find the divergence of $\bar{f}=(x y z) \vec{\imath}+\left(3 x^{2} y\right) \vec{\jmath}+\left(x z^{2}-y^{2} z\right) \vec{k}$.	[L3][CO5]	[5M]
	d) Show that $\bar{f}=(x+3 y) \vec{\imath}+(y-2 z) \vec{\jmath}+(x-2 z) \vec{k}$ is solenoidal.	[L1][CO5]	[5M]
7	a) Find $\boldsymbol{d i v} \overline{\boldsymbol{f}}$ if $\overline{\boldsymbol{f}}=\boldsymbol{g r a d}\left(\boldsymbol{x}^{3}+\boldsymbol{y}^{3}+\mathbf{z}^{3}-\mathbf{3 x y z}\right)$.	[L3][CO5]	[5M]
	b) Find the $\boldsymbol{c u r l}$ of the vector $\overline{\boldsymbol{f}}=(\boldsymbol{x}+\boldsymbol{y}+\mathbf{1}) \overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}-(\boldsymbol{x}+\boldsymbol{y}) \overrightarrow{\boldsymbol{k}}$.	[L3][CO5]	[5M]
8	a) Prove that $\bar{f}=(y+z) \vec{\imath}+(z+x) \vec{\jmath}+(x+y) \vec{k}$ is irrotational.	[L5][CO5]	[5M]
	b) Find curl \bar{f} if $\bar{f}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.	[L3][CO5]	[5M]
9	a) Find 'a' if $\overline{\boldsymbol{f}}=\boldsymbol{y}\left(\boldsymbol{x} \boldsymbol{x}^{2}+\boldsymbol{z}\right) \overrightarrow{\boldsymbol{i}}+\boldsymbol{x}\left(\boldsymbol{y}^{2}-\mathbf{z}^{2}\right) \overrightarrow{\boldsymbol{j}}+\mathbf{2 x y}(\boldsymbol{z}-\boldsymbol{x y}) \overrightarrow{\boldsymbol{k}}$ is solenoidal.	[L3][CO5]	[5M]
	b) If $\bar{f}=(x+2 y+a z) \vec{\imath}+(b x-3 y-z) \vec{\jmath}+(4 x+c y+2 z) \vec{k}$ is irrotational then find the constants a, b and c.	[L3][CO5]	[5M]
10	a) Prove that $\operatorname{div}($ curl $\bar{f})=0$.	[L5][CO5]	[5M]
	b) Prove that $\nabla\left(\mathrm{r}^{\mathrm{n}}\right)=\mathrm{nr} \mathrm{r}^{\mathrm{n}-2} \overline{\mathrm{r}}$	[L5][CO5]	[5M]
11	a) Prove that $\boldsymbol{\operatorname { c u r l }}(\emptyset \overline{\boldsymbol{f}})=(\boldsymbol{g r a d} \emptyset) \times \overline{\boldsymbol{f}}+\emptyset(\boldsymbol{\operatorname { u r l }} \overline{\boldsymbol{f}})$	[L5][CO5]	[5M]
	b) Prove that $\nabla \cdot(\bar{f} \times \bar{g})=\bar{g} \cdot(\nabla \times \bar{f})-\bar{f} \cdot(\nabla \times \bar{g})$	[L5][CO5]	[5M]

UNIT -V
 VECTOR INTEGRATION

	a) Define Line integral.	[L1][CO6]	[2M]
1	b) Define work done by a force.	[L1][CO6]	[2M]
	c) State Green's theorem in the plane.	[L1][CO6]	[2M]
	d) State Stoke's theorem.	[L1][CO6]	[2M]
	e) State Gauss's divergence theorem.	[L1][CO6]	[2M]
2	a) If $\bar{F}=\left(5 x y-6 x^{2}\right) \vec{\imath}+(2 y-4 x) \dot{j}$. Evaluate $\int_{c} \bar{F} . d \bar{r}$ along the curve $y=x^{3}$ in xy-plane from $(1,1)$ to $(2,8)$.	[L5][CO6]	[5M]
	b) Find the work done by a force $\bar{F}=(2 y+3) \vec{\imath}+(x z) \vec{\jmath}+(y z-x) \vec{k}$ when it moves a particle from $(0,0,0) t o(2,1,1)$ along the curve $x=2 t^{2} ; y=t ; z=t^{3}$.	[L3][CO6]	[5M]
3	If $\bar{F}=\left(x^{2}+y^{2}\right) \vec{\imath}-(2 x y) \vec{j}$. Evaluate $\int_{c} \bar{F} . d \bar{r}$ where ' C ' is the rectangle in xyplane bounded by $y=0 ; y=b$ and $x=0 ; x=a$.	[L5][CO6]	[10M]
4	a) Evaluate $\int_{s} \bar{F} \cdot \bar{n} d s$. where $\bar{F}=18 z \vec{\imath}-12 \vec{\jmath}+3 y \vec{k}$ and ' S ' is the part of the surface of the plane $2 x+3 y+6 z=12$ located in the first octant.	[L5][CO6]	[5M]
	b) Evaluate $\int_{s} \vec{F} \cdot \bar{n} d s$. where $\bar{F}=12 x^{2} y \vec{\imath}-3 y z \vec{j}+2 z \vec{k}$ and ' S ' is the portion of the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$ located in the first octant.	[L5][CO6]	[5M]
5	a) If $\vec{F}=2 x z \vec{\imath}-x \vec{\jmath}+y^{2} \vec{k}$. Evaluate $\int_{v} \vec{F} . d v$ where ' V ' is the region bounded by the surfaces $x=0 ; x=2: y=0 ; y=6$ and $z=x^{2} ; z=4$.	[L5][CO6]	[5M]
	b) If $\vec{F}=\left(2 x^{2}-3 z\right) \vec{\imath}-2 x y \vec{\jmath}-4 x \vec{k}$ then Evaluate $\int_{v} \nabla . \vec{F} d v$ where ' V ' is the closed region bounded by $x=0 ; y=0 ; z=0$ and $2 x+2 y+z=4$.	[L5][CO6]	[5M]
6	Verify Green's theorem in a plane for $\oint_{c}\left(x^{2}-x^{3}\right) d x+\left(y^{2}-2 x y\right) d y$ where ' C ' is a square with vertices $(0,0)(2,0)(2,2)$ and $(0,2)$.	[L4][CO6]	[10M]
7	a) Apply Green's theorem to evaluate $\oint_{c}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where ' C ' is the curve enclosed by the x -axis and upper half of the circle $x^{2}+y^{2}=a^{2}$.	[L3][CO6]	[5M]
	b) Evaluate by Green's theorem $\oint_{c}(y-\sin x) d x+\cos x d y$ where ' C ' is the triangle enclosed by the lines $y=0, x=\frac{\pi}{2}$ and $\pi y=2 x$.	[L5][CO6]	[5M]
8	Verify Stoke's theorem for the function $\bar{F}=x^{2} \bar{\imath}+x y \bar{\jmath}$ integrated round the square in the plane $z=0$ whose sides are along the lines $x=0, y=0, x=a, y=a$	[L3][CO6]	[10M]
9	Verify Stoke's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \vec{\imath}-2 x y \vec{\jmath}$ taken around the rectangle bounded by the lines $x= \pm a, y=0, y=b$.	[L4][CO6]	[10M]
10	Using Gauss's divergence theorem, Evaluate $\iint_{s} x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y$ where ' s ' is the closed surface consisting of the cylinder $x^{2}+y^{2}=a^{2}$ and the circular discs $z=0 ; z=b$.	[L3][CO6]	[10M]
11	Verify Gauss's divergence theorem for $\vec{F}=\left(x^{3}-y z\right) \vec{\imath}-2 x^{2} y \vec{\jmath}+z \vec{k}$ taken over the surface of the cube bounded by the planes $x=y=z=a$ and coordinate planes.	[L4][CO6]	[10M]

